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The propagation of small-amplitude waves is investigated in an incompressible visco- 

elastic fluid, the rheological behavior of which is described by a nonlinear differential- 
operator equation of state. 

Waves in a linear viscoelastic medium have been discussed in detail in TJ, 21. In this 
paper, we consider the models of Oldroyd [3] and de Witt [4], and the generalizations of 

these models for the case of the finite spectrum of the times of relaxation and retarda- 

tion. For the stated models an invariant formulation is adduced for the conditions of 
evolutionarity of a system of hydrodynamic equations. Possible types of short transverse 
waves are esteblished for media which possess transient elasticity. The phase polars and 
group polars of a point source are considered. The local characteristics are adduced for 
high-frequency transverse waves in the case of reflection and refraction at the boundary 

of an Oldroyd fluid with a linearly elastic solid. 
Small perturbations are considered for the presence in the fluid of a stressed state which 

is different from the hydrostatic pressure. 

1. Formulation of the condition, for evolutionrrity of the 
hydrodynamic equotlonm of model, po6aea#tng a finite let of 
relaxation and retardation times. The system of dynamic equations for an 

incompressible viscoelastic fluid consists of the equation of continuity 

div v = 0 (1.~1 
the equations of momenta 

pdv]dt = -Vp+divT+# (1.2) 
and the tensor equation of state 

Pr (;) T = 2rlQs (g) E (I.31 

In Eq, (1.3), T is the tensor of “viscoelastic” stresses, E is the tensor of the rare of 
deformation ; P,(D I D t) and Q, (D / Dt) are differential operators representing poly- 

nomials of DIDt 

p,(++&+&;). Qs(;)=4h(i+e&) (I.41 

The quantities hi and 8 i form relaxation and retardation spectra, respectively. The 
symbol DA/Dt denotes the relative convective derivative of the tensor A defined by 
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one of the following rules: 

DA dA 
-ix- =-iii -(AE+EA)+DA-AQ (1.:)) 

DA 
-jfE- 

++(AE+EA) j!2A-A9 

Il.4 dA ’ QA - A!J 
T7= -ET 

In the Cartesian system of coordinates, the components of the tensors E and Q have 
the form eij = t/a (Ui, j + nj, if, @ij = l/z (vj, i - pi, j) 

The symbol (1.5) denotes the “contravariant” derivative in Oldroyd formulation ; the 
symbol (1.6) denotes the “covariant” derivative in Oldroyd formulation and the symbol 

(1.7) is the Jaumann-de Witt derivative. 

Models of the type (1.3), in which the relative convective derivatives are replaced by 
partial derivatives with respect to time, are used in the theory of linear viscoelasticity. 
Similar models, containing nonlinear differential operators, are considered in 15, 6 ] . 

Using a simple mechanical model for the microstructure of a viscoelastic meterial, 

Blend p] showed that there are two classes of linear variants of model (1.3). Media 
possessing transient elasticity for which r = s + 1 belong to the first calss. Models 

which exhibit viscous behavior when transiently stressed belong to the second class. For 
these models r = s. We shall consider similar classes for media with the equation of 

state (1.3) at the various laws of differentiation (1.5)-(1.7). 
We shall consider the arbitrary continuo~ motion of a medium, the parameters of 

which v (x, t), p (x, t) and T (x, t) satisfy the system of equations (l.l).(l. 3). We 
impose on the flow parameters small perturbations SV (x, t), ijp (x, g), 6T (x, t). 
With the usual assumptions made for linearization, we arrive at a system of linear equa- 
tions with partial derivatives relative to the perturbations. The coefficients of this sys- 
tem depend on the parameters of the unperturbed flow. 

We represent the perturbations in the vicinity of an arbitrary point of space of the 

independent variables (x0, d,) in the form of a plane wave 

(8u,, 8p, 8T,j) = Re [(q, 4, oij) exp i (kx - of)J (1.8) 
assuming that the complex amplitudes of the perturbations wit Q and Ufj are constant. 

In order to obtain waves of the form of (1.8) as a solution, it is necessary to assume 
that the coefficients of the system of equations are constant. In this case, we assume the 

coefficients of the system in the fairly small vicinity of the point (x0, to) to be equal 
to their values at this point. A similar procedure is justified when considering short-wave 
perturbations, for which at distances of the order of a wavelength the variation of the 

coefficients of the system is negligibly small. Then, in order to investigate evolutiona- 
rity of the system of equations, we can use the method of constant coefficients (see e. g. 

IT). 
When considering short waves and for the derivation of the conditions for evolutiona- 

rity in the linearized equations (1. I)-(1.3). it is sufficient to retain only terms with 
higher derivatives with respect to time and the coordinates of the perturbations 6Vi, i?p 

and 6T,,. The linearized equations of continuity and momenta then assume the form 

div 6v= 0, ~d~~~d~ = - V6p -t div 6T (1.9) 
we should also add to Eqs. (1.9) the linearized equation of state. For this we shall 
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cansider two cases, 

is r = s 1. The equations are being added for the rules of differen- 
tiation of (1. 5)-(I. 7) are of the form respectively 

agj$+E.T-TT8E-+ iK?~T--T&+2$3~BE 

a~(~~t‘8ET+TdE+bnT_TTdP)-Bllb~BF, 

(IJO) 

a~(~i_~~.T-T~~)~24b~6E 

(it- fib,, 

r-1 

b = Tf ei(r.>>l); a = h, b = 4 fr = 1) 
&f i=l 

By substituting ~ohtions of the form (1. 8) into Eqs, (I. 9), we obtain 

L!?$Zi = 0, - PCWi = - qni + QijrZj (C zz w/k - vn, n = k//t) (1.21) 

By substituting solutions of the form (1.8) into Eqs. (1. la), we obtain 

snj+ + Tapk) wi -!- (q $ ni + f T&z, ) wj - 

- &z, + Ttrnj) wk] - 0 

Each of the three groups of equations in (1.12) together with Eqs. (1. ll), forms a sys- 

tem of ten linear algebraic homogeneous equations relative to ten perturbation ampli- 

tudes of Wi, (I and (Tij. The condition for the existence of nontrivial solutions for these 
systems is that the determinants of the stated systems vanish. 

In order to evaluate the determinants, it is convenient to consider all quantities in a 
special rectangular Cartesian system of coordinates 8, The axis x1 of the system 8 is 

orientated along the vectoru-We select the directions of the axes zsand zs such that the 
noudiagonal element Ts, of the undried “viscoelastic” stress tensor is equal to zero. 
If the area zszs is not subjected to a uniform tension or compression, then a nnfque sys- 

tern S exists in which T,, = 0 and T,, > T,,. We relate all vector and tensor quan- 
tities to this system. 

For the determinants A,, As and As of th e system of equations corresponding ~a the 

rules of differentiation of (1.5)-(1.7). we obtain the following expressions: 

A1 = csr-2 (- PC” -+ Tll $ qb/a)a 

A a = COP-s (PC2 + Ts* - t@/a) (pcs -+ Tsa - @/a) 

As = csr.-s (pcs - s/s (T,, - T,,) - @/a) @c” - “I2 t TX, - Tssf - qW4 

The nontrivial value of es for a model with “contravariant’” derivative in Oldroyd 

formulation is 9 = p-1 (T,, -+- s-$./a) 
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The nontrivial values of c2 in the model with “covariant” derivative in Oldroyd for- 
mulation are c a = p-1 (qb/a - T,,), + c-2 = p-l (?@/a - Tzz) 

For nontrivial values of ~2 in the model with the Jaumann derivative we obtain the 
formulas 

c 2 = P--l P/2(&, - Tss) + @/al, + c-2 = p-1 P/s&, - T,,) + qUaI 

In OUT further considerations we shall call the quantity c-velocity of sound and we 

shall define the dependence of the quantity c on the direction n by the term “anisotropy 

of sound”. Waves whose fronrs are propagated in a given direction with velocities c, and 
c_ shall be called (by analogy, for example, with magnetohydrodynamics) fast and slow 

waves, respectively. 
The system of equations is evolutionary if the condition Im w < const for k -+ CO 

is satisfied for solutions of the form (1.8). 
It is obvious that in our case the condition for evolutionarity is equivalent to the 

requirement that c2> 0 for each of the models being considered (*). Therefore, the 

conditions for evolutionarity for models with the derivatives (1.5), (1.6) and (1.7), 
respectively, have the form 

T,, + @Ia> 0, -T22 + ribla> 0, ‘/a VI,---2,)+rlbla> 0 
As the direction of the vector n can be arbitrary, and the system S rotates together 

with the vector a, the invariant form must be assigned to the inequalities written above. 
let us assume that T, > T2 > T3 are the principal values of the tensor T at the point 

being investigated. Using the fact that the principal values of the tensor T realize ex- 
trema of the quadratic form Tijninj defined on a unit sphere, we obtain for the model 

(1.3) with the derivative (1.5) the condition for evolutionarity in the form 

Ta> - qbla (1.13) 
In deriving the invariant formulation for the condition of evolutionarity for a model 

with the derivative (1.6). we note that for a fixed direction of n the quantity T,, reali- 
zes a maximum of the quadratic form in a set of vectors formed by the intersection of 

the unit sphere with the plane %~a. Therefore, a direction n exists for which T,, = T,. 
Consequently, the equations for the “covariant” model are’ evolutionary under the 

condition T, <rlbla (1.14) 
The criterion for evolutionarity is established similarly for the model with Jaumann 

derivative l/z (T, - Ts) <@la (1.15) 

For two-constant models of the medium (r = 1, s = 0) the quantity qbju is equal 

to the shear modulus of the fluid p = q/k, where 2 is the unique stress relaxation time. 

The conditions that the equations of the two-constant model be evolutionary, interpreted 

*) The condition Im o / k -, 0 for k + 00 at first sight seems to be inadequate for root 
extraction, as this condition is also fulfilled in the case when lm o -AkN, where A > 0, 

0 < N < 1. However, such behavior of Im o is found to be not possible in consequence 
of the specific structure of the total variance equations, corresponding to linearized sys- 
tems with the conditions of conservation in the latter, terms with the lowest derivatives. 
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as the conditions for a hyperbolic system of equations of uniform unsteady flow, were 
given in 181. 

It is easy to see fIom inequalities (1.13)~(1.15) that the restrictions on the state of 
stress of the medium imposed by the requirements of evolutionarity are completely dif- 
ferent for different models. In models containing differential oldroyd operators, small 

perturbations start to increase with infinite rate if the compressing normal “viscoelastic” 
stresses exceed the value of rjb / a in the case of the “contravariant” model, or if the 
tensile normal stresses exceed this same value in the “covariant” model In models with 
the differential Jaumann operator, a similar increase of small perturbations occurs at 
fairly high tangential stresses. 

Second case, T = s. In this case. the system being examined consists of the equations 
of (1.9) and the linearized equation of state which, for any of the differential rules 

(1.5)~(1.7). has the form + * 

a=b*=i (r = 0) 

The determinant of the homogeneous system of equations which is obtained by substi- 

tuting (1.8) into Eqs. (1.9).(X. 16) is 

h = P (pc + ikqb* I a)” 

Therefore, the unique nontrivial quantity c is equal to - &$)*/up. This value satis- 
fies the condition of evolutionarity. as lm o< 0 . Consequently, the hydrodynamic 
equations of an incompressible medium (1.3). in the case of r = s , are evolutionary. 
In the case r = s = 0 ,we arrive at the we&known conclusion concerning the evolu- 
tionarity of the Navier-Stokes system of equations. 

For the models (1.3) with I”= s , the planes t = con& are the characteristics of the 
systemof equations. Therefore, perturbations of the parameters in such models can pro- 
pagate with infinite velocity. 

The conditions of evolutionarity were established above from analysis of the asymp- 
totic variance equations, corresponding to short-wave perturbations. For models of the 
class r = a + 1 , we can consider in place of the asymptotic variance equations, the 

characteristic equations of systems which describe uniform unsteady flow. Here the evo- 
lutionarity condition is equivalent to the requirement that the characteristic equation 

corresponding to the model being investigated has real roots. For models of the class 

f = s , we can not restrict our consideration to only one characteristic equation when 
examining the system of equations for evolutiona~ty. 

We note that in order to determine the propagation velocity of waves of finite length 

in models of both classes, total variance equations must be considered. 

2, Application of an “evolutionary” modal In the problsm of 
devslopmant of one-dimsnrionrl perturbations in a plrns ohan- 
ncl. Solutions are possible in the case r = s + 1, in which the conditions for evolu- 
tionarity are violated. Appropriate examples are given in [9, lo] for a two-constant 
Oldroyd “contraviariant” model. In this case, the equations of the original model, in 
general, cannot be used for describing the development of small perturbations. as the 
upper limit of the rate of increaseofsinusoidal initial perturbations for values of k from 
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the interval (0, oo) is found to be infinity. 
In order to describe the development of small perturbations in the region where evo- 

lutionarity of the initial equations is not possible, the effect of supplementary physical 

parameters should be taken into account. In a real system, these parameters can be ex- 

tremely small, but they may play a definite role in establishing a finite upper limit for 
the rate of buildup of perturbations. 

The nonsteady-state problem concerning one-dimensional flow in a plane channel 
0 < z < h is considered in [9] for a two-constant OJdroyd “contravariant” model 

‘I’ + hDT,‘Bt = 2nE (2.1) 

The problem is reduced to finding the solution of a linear second-order equation 

relative to the longitudinal velocity Al , This equation in the absence of a longitudinal 

pressure gradient has the form 

PU T.Oe”la + q/h abi % du 
at’i-- 

--- 
P z + h at -0, ‘GO = const (22) 

The initial and boundary conditions for Eq. (2.2) are formulated in the form 

u (2, 0) = uo M (au/a&J = Ul (4 24 (0, t) = u (h, t) = 0 (2.3) 

The solution of this problem is constructed in the form of an infinite series 

u (z, t) = F3 (t)sinalz $- F, (t)sinf&z -j- . . . . Uk = #rUtIll (2.4) 

In the case when Eq. (2.2) at the instant t = 0 belongs to the elliptical type, the series 

(‘2.4) can prove to be divergent for any value oft > 0 of the ellipticity interval of Eq. 

(2.X). Consequently, model (2.1) becomes unsuitable for describing the process of deve- 
lopment of small perturbations. 

It should be noted that with a fairly “good” behavior of the functions u. (z) and UI (2) 
their Fourier coefficients fork * CQ candecrease so strongly that the series (2.4) will be 

convergent. In this case, the starting system of equations can supply certain data about 

the development of the initial perturbations. A similar approach is used in ~I.], where 

the problem with initial data for an elliptical equation is considered. In this case the 
rate of increase of the analytic initial distribution, decreasing at infinity, is limited 
down to a certain “critical” instant. 

The problem of flow in a channel as formulated in [9] can be considered also for a 

three-constant “contravariant”Oldroyd model 

(2.5) 

It was established in Sect.1 that the hydrodynamic equations for model (2.5) are evo- 

lutionary. In connection with this, it is interesting to examine the stated problem for 

model (2.5) in the region of ellipticity of Eq. (2.2) and to investigate the behavior of 
the perturbations for 6 + 0. In the three-constant model, for the longitudinal velocity 
u we obtain the equation 

(2.6) 

We preserve the initial and boundary conditions for Eq. (2.6) in the previous form 

(2.3). We also present the solution of problems (2.3) and (2.6) in the form of the series 
(2.4) ; however, the behavior of the function F, (t) will be significantly different from 
the behavior of the similar fictions in the two-constant model. Without deriving pre- 
cise formulas for lilh (l), we shall note briefly the principal features in the behavior of 
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these functions for models (2.1) and (2.5). 
If the initial perturbations z10 and U, have the form of simple harmonics sin ffkz, the 

functions Fk (t! for the two-constant model in the ellipticity interval (0, t*) of Eq.(2.2) 

at k -+ CM behave as exp (ok f(t)), The function f (t) is a positive monotonically increas- 
ing function in the interval (0, t*) and j (0) = C. Thus, the rate of increase of the slnuso- 

idal perturbations increases unlimitedly when the wavelength tends to zero. 
In the three-constant model for the same simple initial perturbations and fixed value 

0 the functions Fk (t) decrease in their absolute value in the interval (0, tt) if k is fairly 

large. Therefore, ultra-short wave perturbations are not responsible for the principal 

mechanism of oscillation buildup. In the three-constant model, the carriers of this mecha- 

nism prove to be “medium wave” ~rturbations. The wavelengths of these ~rt~ba~ons 

lie in an interval limits of which are dependent on 8, so that for S > 0 the lower limit 

of the interval is strictly positive. There is a “critical” wavelength within this interval, 

which also depends on 8 and for which the corresponding function F, (t) z F (t, f3) has 
the maximum rate of increase. For 0 -* 0 , the “critical” wavelength tends to zero cau- 
sing the most “dangerous” short-wave perturbations. The function F (t, 0) for 0 -+ 0 in 

the interval (0, t*) behaves as exp 18” l hn (t)l, where g (t) is a positive, monotonically 
increasing function in the interval (0, t*j and g (0) = 0, Consequently, in the three- 

constant model for the rate of increase of sinusoidal perturbations the finite upper limit 

exists. For 8 -+ 0 , this limit removes to infinity. 
For t -+ CO , the perturbations in the two-constant and three-constant models damp. 

In model (2.1) the damping of the short-wave ~~urbations is of an oscillatory nature, 
and the logarithmic decrement of the oscillations tends to zero for k -, 0~. In model 

(2.5), waves of “medium” range have the character of damping oscillations for t -, co, 
and for the “critical” wavelength the decrement tends to a constant value for 0 -, 0. 

Damping of the ultra-short waves in model (2.5) is aperiodic. 
An example of the application of the three-constant model (2.5) with subsequent 

limiting transition 8 --, 0 in the region of evolutionarity of model (2.1) is given in DO]. 

3, Type8 of rhort WIVOE in media which potrs~r trrnllent ela- 
aticity, Phrae polar8 and group polarr. We shall consider media which 
correspond to the equation of state (1.3) for the case r = s j- 1. For such media which 
possess finite propagation velocities of short wave perturbations we shall establish the 

possible types of plane short waves. 
Considering all quantities in the 8 system of coordinates, introduced in Sect. 1, we 

find the general solution of the homogeneous systems of linear equations formed by Eqs. 

(1.11) and one of the groups of Eqs. (1.12). For the “contravariant” model the general 
solution for the perturbation amplitudes has the form 

r-4 = 0, Q = 0, a,, = 0, $2 = - pews, 01s = - phus 

%z = --2T,,w,lc, ~23 = -_(T,3w, + T,,eJlc, %s = --BT,,w,/c (3.1) 
c = f [p-l (T,, + qbla) 1”~ 

The complex amplitudes w2 = Us $- ig2 and us = csa + if& in the formulas{9 l), 
which correspond to the velocity components in the transverse wave are arbitrary, all 
remaining values are linear combinations of these amp~tudes. 

The relations between the parameters of short transverse wave of small amplitude can 
be obtained from the relations of the tangential discontinuity. if we assume the intensity 
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of the latter to be infinitely small. For example, in the case of the “contravariant” 

model (2. l), formulas (3.1) are obtained from the relations at the discontinuity in one- 
dimensional flow established in [8]. In the discontinuitv relations it is necessary to neg- 
lect quadratic terms in relation to the magnitudes of the jumps and to substitute {vi} by 
wi and {Tij} by aij+ 

Relationships (3. I) show that in a transverse wave (1.8). the velocity vector Sv is ellip- 
tically polarized. The parameters of the ellipse circumscribed by the extremity of the 

vector 6v and its orientation depend on the complex amplitudes ru, and w3. If the condi- 
tion uza3 + &J$+ = 0 is satisfied, the axes of the ellipse coincide with the coordinate 

axes x2, 5s. Linear polarization of the vector 6v is obtained in the particular case when 

4 - aA = 0. 
In the case of the “covariant” model the general solution for the perturbation ampli- 

tudes in fast waves has the form 

wr = w, = 0, q = 2T,,w,lc+ 
CT 11 = 2T1,w&+, CT 13 = --PC+ w3 (3.2) 

a12 = a,, = a,, = 083 = 0, c, .- = + p+~ [qbla - T331’fz 

and the general solution of the perturbation amplitudes in slow waves is presented in the 

form = we = 0, 

ll w: 2T,,w,ic_, 
q = 2Tl,wzJc_ 

cr %a = -ppc_w, (3.3) 
l&3 = o22 = c& = Ga33 = 0, c_===+p -‘h Iqbia - T,,I’~~ 

It follows from relations (3.2) and (3.3) that in the corres~nding waves, the vector 
6v is linearly polarized. The plane of the oscillations of this vector cannot be arbitrary 

as in the case of the “contravariant” model. In a fast wave this is the coordinate plane 

zrza, and in the slow wave it is the coordinate plane X1&. In the “covariant” model 

composition of two mutually perpendicular oscillations does not lead to elliptical pola- 

rization because of the different velocities of propagation of the combined waves (*). 
In this model, the initial sinusoidal perturbation, for which the vector 6~ is arbitrarily 
directed in the plane ~$3, decompose into linearly polarized waves propagating in the 
direction _& Xl. The components of the vector 8v in the directions ~2 andz, propagate 

with different vefocities. 
For the model with the Jaumann-de Witt derivative, the relations between the ampli- 

tudes in fast waves are as follows: 

wr = w, = 0, q = Traw&, 

011 = Lw&+~ 013 = --pc+w,, 023 = -“izT~,w3lc,, 033 = -cl1 (3.4) 
012 = $2 = 0, c+ = ~“1% P/2(T,, - T33) + qblaI’/~ 

For slow waves in the same model, we obtain 

wt = wg = 0, 4 = Trsw&_ 
o rr = T,,w,k., or, = -pc_ws, oza = -err, eras = --llzT13~lc_ (3.5) 

*) Exception from this rule is the case when the direction of the sr-axis is such that 
T,, = T3s, i.e. c- = c+. For an arbitrary tensor ‘I’, when TI > T, > T,, there are always 
two such directions. (In crystal optics, similar directions define the principal axes of a 
biaxial crystal). 
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c$j = css = 0, C_ = & p--‘/s Wa(T,, - T,,) + T@~u]*~s (=a f 

The implications of relations (3.4) and (3.5) concerning polarization of the waves is 
completely analogous with those which hold for the “covariant” model. 

We note that in waves corresponding to the “Jaumann” model, the tensor 6T is a devi- 

ator ( l ). 
We proceed to the problem of propagation of three-dimensional short-wave perturba- 

tions. Let the initial condition for perturbation of a certain hydrodynamic function 

represent a wave packet combined from short-wave harmonics, which have identical 
wavelength and which depend on all kinds of directions. The initial distribution can be 
represented in the form 

U(x,O)= R~{~~ , exp (iknx) L, (cp, 6) sin 6 drp d6 
frll=l ) 

(3.6) 

Here the integral is taken with respect to unit sphere 1 n 1 = 1; L (cp, f+> is a spectral 

function. Expression (3.6) follows from expansion of a perturbation of given type into a 
three-dimensional Fourier integral. The development of initial perturbation (3.6) with 

time will take place in accordance with the formula 

Anisotropy of sound will have some effect on the geometry of the wave front in the 
~opagation of such a probation. 

We shall introduce the Cartesian system of coordinates with origin at the point xs 

being examined, moving with an unperturbed velocity v (x0). The coordinate axes of 
this system R are directed along the principal axes of the unperturbed tensor T. Let r 

be the radius vector of an arbitrary point relative to the origin of the system R. The 
surface defined by the vector equation r = c (n)n, where the parameter n passes the 
unit sphere, represents the phase polar. In the “contravariant” model the phase polar is 

obtained by transformation of the inversion relative to the sphere with center at the 
point x0 of an ellipsoid with the same center, for which the system R is found to be a 

system of the principal axes. 

Let us suppose that the initial distribution U (x, 0) has a singularity at the point 
x = x0. At the instant t , the “con~bution” of this slngulari~ in an elementary plane 

wave. the front of which is propagating in the direction n, is concentrated on the planes 

orthogonal to the vector n and passing through the extremity of the vector x0 + (v -j- 

$ cn)t. These planes, constructed for all possible directions n, form a two-parameter 
set. The envelope of this set is the surface of the wave front which carries on it the sin- 
gularity. 

In the “contravariant” model the wave front is an ellipsoid, for which the system R 

coincides with the system of the nrincipal axes. The magnitudes of the semi-axes of 
this ellipsoid at the instant t = 1 are equal to the velocities of sound in the principal 
directions of the tensor T. The wave front at t = 1 is a group polar, formed by the 

*) In the case when we use the Williams-Bad operator [5] in model (1.3) instead of the 
operator (1.5). the tensor 6T is also a deviator, and the condition for evolutionary of 
model (1.3) for the case r = s + 1 has the form of (1.13). 
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extremities of the group velocity vectors V == &,r/&. The relative group velocity in 
the R system of coordinates is :5 

V = 
II 
p ( TInI + T,nz2 3 T,na2 -!- q:jle”‘x tTi-i-q$ n$i 

i I 
‘i 

Here the unit vectors ei form the base of the system K ; IZiare the components of the 

vector n in this base. The group and phase velocities coincide only for the principal 
directions of the tensor T, and the group polar is contained within the phase polar. 

For the “covariant” and “Jaumann” models, there exist two types of phase and group 

polars: fast and slow. A similar division of polars also holds in magnetohydrodynamics 
fl2]. The geometry of the wave fronts for models containing the differential operators 

(1.6) and (1.7) in the general case are more complex than in the “contravariant” model. 
If the tensor T is plane, the vector 6v lies in the same plane, and two-dimensional 

perturbations are propagated in it, then the geometry of the wave fronts is similar for all 

three models with the derivatives (1.5)-(1.7). In this case, one of the principal values 
of the tensor T is equal to zero. The wave fronts originating from the point, are ellipses 

for all three models and the principal axes are parallel to the principal direction of the 

tensor T lying in the stated plane, The wave front for t = 1 in the “covariant” and 

“Jaumann” models coincides with the slow group polar if 3‘: = 0, and with the fast group 
polar if T1 = 0. In the case when T, =~ 0, the wave front for t = 1 is found to be com- 

posed of fragments of fast and slow polars. Such a wave front structure in models with 
the derivatives (1.6) and (1.7) is due to the perpendicular polarization of the fast and 

slow waves. 
We note that the orthogonality of the vectors 6v+ and 6v_ i!l fast and slow waves, the 

fronts of which are propagated in one direction, is characteristic also for other types of 

continua possessing anisotropy. This phenomenon occurs in the propagation of magneto- 

sonic waves 1131 and also in the propagation of elastic waves in crystals 1141. 
In the light of what has been said, we shall consider the problem concerning the exis- 

tence of characteristics in two-dimensional steady flow with a plane tensor T for the 
case of a two-constant model of a fluid. For definiteness, we shall consider the “contra- 

variant” model (2.1). Examination of other models with a single time of relaxation is 
performed similarly. 

Suppose the flow takes place in the plane XY, so that T,, = T,, = T,, = 0 and 
2j = 0, and all other flow parameters depend only on 
u:known vector-function f = (cx, v,,, p, T,,, Txar, 

5 and Y. If we introduce the 
T,,), the entire system of 

hydrodynamic equations for the model (2.1) can be written in the form of the quasilinear 

differential equation A (f) 2 I B cfj ;; t g cfj = o 

where A and B are square matrices of sixth order. If the characteristics of the system 
y (z) satisfy the differential equation dyldx = T (z, y), then T is a root of the charac- 
teristic equation 

detj/B-rAjI=O 
The roots of the latter equation have the form 

z 1,a = ~UI%~ zg,4 = + i 

(3.7) 
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Here vi and us are components of the velocity vector in the system of the principal 
axes of the tensor T ; cl and cs are the magnitudes of the velocities of sound in the direc- 
tions of the principal axes. Real characteristics which differ from streamlines exist only 
for the condition $, 2 0, 

The following interpretation can be given to this fact. In steady flow. the nontrivial 
characteristics passing through the point x0 represent the wave fronts of perturbations 

originating from moving particle coinciding with the point x0 for t = 0 . These station- 
ary wave fronts are the envelopes of a set of elementaty wave fronts, representing ellipses 

with centers at the points xg + v (x,)t. All these ellipses are similar, and their principal 
axes are parallel to the principal directions of the tensor ‘I’ (x0). The elementary wave 

fronts expand with time and for t = I, such a wave front coincides with the group polar. 
It is clear that a given set of ellipses has an envelope only in the case when from the 

point x0. a tangent to the group polar can be drawn with center at the point % 3-v (x0), 
i.e. when the point x0 is not located inside the group polar. The latter means that at 

the point x0 the quantity 4 is nonnegative and the characteristic roots zg9 ,, determined 
by the formulas (3.7) are real. 

The situation considered is similar to that which occurs in conventional gas dynamics, 
where characteristics which are different from the streamlines of steady two-dimensional 

flow exist only in supersonic regions. 

We note that the system of equations for plane flow for model (2.1) with the plane 

tensor T does not become hyperbolic even in the case of supersonic flow, because of the 

presence of the imag~a~ characteristic roots Q.~. 

4, Reffactlon and refraction of high-frequency tranrvsrre wave 
of a vlscoelo8tic fluid incident on an elattic wall, It isnot difficult 
to foresee that the phenomenon of sound anisotropy in a viscoelastic fluid, possessing 

transient elasticity, should influence the nature of the reflection and refraction of waves 
at the boundary of such a fluid with other media. 

Suppose, for example, that an incompressible fluid, corresponding to the “contravariant” 

model (2.1) and a classical linearly elastic solid are separated by a plane boundary G. 

We shall assume for the positive direction of the normal v to the interface of the media, 

the direction from the fluid to the solid body. 

We shall denote by a dash the quantities referring to the elastic medium and we shall 
assume the classical equation of state 

P,jl = x’ div ~‘6~~ + 2l5.k~~~~ @*if 
for the elastic solid. 

The relations (4.1) are written in Cartesian coordinates. Here P+j’ are components of 
the stress tensor, u’ is the displacement vector, x’ and Y’ are the Lame constants, sii’ 

are the components of the tensor of the infinitely small deformations. 
Suppose there is a certain combined movement of the media (2.1) and (4.1). for which 

the interface G is the contact surface. Then the parameters of this movement should 
satisfy the laws of conservation of mass, momentum and energy at points of the surface G 

8” = 77”) = 0, P” = Pv’. P”V = p,‘v’ (4.2) 

The latter relation in (4.2) has been written with the omission of the thermal conduc- 
tivity of the media. In (4.2). p, and p,’ are the vectors of the stress at the contact surface 
for each medium. 
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We shall assume that short-wave perturbations are excited in medium (2.1). As these 
perturbations are propagated with finite velocity, they are high-frequency perturbations. 

Since the decrement of the oscillations in an Oldroyd fluid (2.1) tends to zero as h - 0, 

then for sufficiently short waves we can neglect damping over a given period of time. 

Therefore, small perturbations of the parameters of both media can be assumed identical 
sinusoidal functions of time at points on the interface. 

Waves, propagating in the fluid, on reaching the interface will be reflected from it and 
will excite waves in the elastic body. We emphasize that all future results will be of a 

localized nature and their range of application will be restriced to a quite small vicinity 
of an arbitrary point of the media interface. 

In the vicinity of the arbitrary point x0 E G , we shall seek solutions for the perturba- 
tions in the form ( * ) 

(hvi, 6p, 6Tij) = Re [(loi, q, aij) ei (kx-ot)l, (x-x0) v < (’ 

(&Ii”, 6p*, 6~~~“) = Re I(w~“, q”, aij”) ei (kbXCDt)], (x-xo)v<(’ 

(6vip, fjpij’) = Re [(u;i’, J$) ei (k’x-ot)], (x-x0) v > 0 

Here, the two primes denote the parameters of the reflected wave. We shall assume 
that the interface of the media remains to be the contact surface in the perturbed motion. 

Using the laws of conservation (4.2). we arrive at the following boundary conditions, 

which should satisfy the perturbations at points of the plane C 

6v, $- 6v, fl = ijv,’ = 0, 6Tbi+6T,,“-6P .’ Y 1 

(6T,, -1. 6T,,i”) @vi -t 6~~“) = 6p.,i’6cL’ 
(4.3) 

In (4.3) we use the circumstance that the pressure perturbation in the wave correspond- 
ing to the “contravariant”mode1 is equal to zero. It follows from (4.3) that at the points 
x E G the eikonals of the incident, reflected and refracted waves, should coincide, i. e. 

kx .= k”x =_ k’x 

The latter condition means that the vectors k, k”, k’ and v lie in the same plane and 
are reduced to the form h_ sin+ =: h”sin$” ==: h_‘sin$’ (4.4) 

Here $ and $’ are the angles between the vectors k, v and k’, V. respectively ; $” is 

the angle between the vectors k”, -V. 

The formulas 
[$ (T,, + p)]“’ , c” = 1; (T,,,,,,, + p)]“* , 

p’ ‘h 
c= c’_r 1 

t ) P 

are valid for the phase velocities of propagation of the waves. 

Here T,, and T,,, ,, are the normal “viscoelastic” stresses of unperturbed flow on 

areas which are orthogonal with the unit vectors n = k/k and II” = k”lk respectively ; 
p = qJh. The quantity c’ is equal to the velocity of the shear elastic waves. 

In the case of no-slip condition of the fluid at the stationary elastic wall taking place 
in unperturbed flow, we obtain the laws of reflection and refraction in the form 

sin$/sin$” = clc”, sinli]/sin$’ = clc’ (4.5) 

We introduce the auxiliary Cartesian system of coordinates K with origin at the point 

*) The case considered here is when longitudinal refracted wave does not appear in the 
elastic body. 
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x0 E C being investigated. The coordinates of an arbitrary point in the system K are 
denoted by x%*.. The axes sf and x2* of the system Ir’ are orientated along pairs of 

mutually orthogonal unit vectors, which realize extrema of the quadratic form Z’ijninj 
at the intersection of the plane of the vectors k and Y with unit sphere I n I = 1. We 
denote by T1* and T,* the normal “viscoelastic” stresses at the coordinate areas Q*s~* 
and x1*x3* respectively, Without restriction of generality, it can be assumed that 
TX* 2 T,*. We denote by x the angle between the vector Y and the positive direction 
of the axis I~*. Then the relations (4.5) can be reduced to the form 

gin ql p’ va TX* cm ix - I#) -j- T,+ sin” (x _ 9) + g j’ir 

i I( 
(4.Q 

sin=--- 
P P’ f 

It is easy to see that in the general case the first equation of (4.6) is not satisfied for 
Q” c It). This effect is due to the anisotropy of sound in the Oldroyd medium (2.1). In 

a linearly Maxwellian fluid c”= c and Q” T=; $, It is obvious that the form of the law of 

reflection is independent of the properties of the second medium by which the fluid is 

bounded. 

In order to determine the angle 9”. we arrive at a quadratic equation with respect to 
2.F: ctg gr’ ) the roots of which are 

z1=--Gtg$S 
(Tl* - T%+) sin 211 

*S==Ctg+i- T1’~~~“~+~lt’~~~‘Z~+~ 

The first root zI must be discarded, as it leads to the initial incident wave, The second 
root zs determines the direction of propagation of the reflected wave front, The positive 
direction XI* can be chosen such that the angle x is varied within the limits 6 < x < n, 

Then, for x = 0 and x = Yan ,the equation @’ = J! is satisfied, i.e. the classical law 

of reflection holds for the normals to the wave fronts. For 0 ( ;c < r/%n , the inequality 

9” < 9 is satisfied while for ‘/en < x < 1~. the inequality 4” > 21) is satisfied. 

In an anisotropic medium the wave excitation formed from harmonics whose wave 
vectors have infinitely close directions, will propagate with group velocity V (n). The 

unit vector I= V/v will be called, as usual, the direction vector of the ray. 

in the R system of the principal axes of the tensor T , wit vectors of the normal to 
the plane wave front and the corresponding ray have the form 

Here ~$9 are the squares of the velocity of sound in the principal directions. The vec- 
tors n, 1 and v are not coplanar in the general case. These three vectors are coplanar 
only for the condition 

(Cl% - c&&jn& + (c$ - csyv1n,n3 + (d - Cl~)%Wl = 0 (4.7) 

In the general case, Eq, (4.7) defines the cone of the directions n. In the case when 
the vector Y lies in one of the principal planes of the tensor T, and likewise in the case 
of coincidence of the two principal velocities of sound, Eq. (4.7) defines two mutually 
orthogonal planes of the directions n intersecting along the vector 9’ ; one of the planes 
is a principal plane of the tensor T. 

The directions of the unit vectors of the normal to the front of the reflected wave and 
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the reflected ray are determined by the formulas 

In contrast from the vectors n, n” and v, which are always coplanar, the vectors 1, 1” 
and v lie in the same plane only in the case when 

Cl2 (%a - CS2)Y~V$Sl + c22 (es2 - C@)v,yra, + es2 (cr2 - c2~)vlv& - 0 (4.8) 

The latter equation defines the plane of the directions n. In the case when v lies in 

the principal plane, t:.e plane (4.8) coincides with this principal plane. If the vector Y 
is oriented with respect to one of the principal directions of the tensor T, Eq. (4. 8) is 

satisfied identically for any n. 
If the vectors v and 11 both lie in the same principal plane, all five vectors Y, n, n” 

I and I” will lie in this clane. If Y does not lie in the principal plane, all the specified 
vectors are coplanar only for n = V. 

As in the case of wave vectors, the calssical law of reflection is not valid for rays. 

In particular, a ray which is incident normally to the interface, can be reflected at an 

angle to the normal. 
In what follows, we shall examine the case when in the unperturbed flow the surface 

G is at rest and there are no tangential stresses at this surface. In this case the direction 
of y will be the principal direction for the tensor T (x,,) , and li, = 9”. The angles of 
the incident and reflected rays with the normal to the interface will also be equal. 

The coordinate axis ~i*of the K system in this case can be assumed to be directed 

with respect to the vector Y. It is obvious that the inequality Tl* > Tz* may or may 
not be fulfilled, It follows from the equation of state (2.1) and (4. I). and from relations 

(4.3) that LC:, = u-~” =- w,’ =: 0. From this and 
from the transversality condition of the waves 

it follows that velocity perturbations in the 

incident, reflected and refracted waves are 
cotinear with the axis Q* of the K system. 
Therefore, all three waves are horizontal sheer 

waves, 
We shall denote the amplitudes of the velo- 

city perturbations in the incident, reflected 
and refracted waves by w = us*, w’ -= WQ’* 

and w”= us”* respectively. The relation 

{CD + W” - w’) [(ru - w")Tl* cm* + (w + 

f w")Ts* sin*] = 0 (4.9) 

follows from the laws of conservation of mo- 
mentum and energy. 

-2 
If we equate the first cofactor in Eq. (4.9) 

Fig. 1 
to zero and use the law of conservation of 
momentum, and if we express the stress ampli- 

tudes in terms of the velocity amplitudes resulting from Eqs. (2.1). (4.1). we can deter- 
mine the transparency coefficient y ~~- IC’/Z and the coefficient of reflection I = 
= w!‘/w= j’__t. 
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The expression for the transparency coefficient has the form 

For sufficiently small relaxation times h , the inequalities 

ci* = [(rr* + p)/p]l’P > c’, c*2 = [(TX* + p)/pl”’ > c’, CiJ = (p/p)” = c’ (4.11) 

can be assumed to be fulfilled. 

The set of curves of I’ (5) for different values of the parameter c% for the case cl* = c,, 
is plotted diagrammatically in Fig. 1. The arrows show the direction of increase of 6 
The dashed curve corresponds to a linear Maxwellian medium. When c’ <c% <co , the 

function y (5) decreases monotonically with increase of 6 from 0 to 0~. In the case 
co <& <c* the function y (5) has a maximum at the point 5 = &. The following for- 
mulas are valid for the quantities & and ta2 : 

c*a~cOa+~~+~c’(coz_si*c”)‘:. 

C*’ = (,,*a 

(CP - coy cl*2 
- c’“) [C’S (Q2 - #$A) pyp* - (CA*2 - c$)2] 

When 5* varies from 0 to CQ , the values of y &.) run trough the interval (y (O), 2). 

For c*% = c+ the function y (5) is monotonic and lim y (<) = 2 for t + DC. In the case 
c* < C*S < x) the distribution of y (5) has singularity at the point 1. = E;,,where 

go = 
cl* (c,*z--- c’@/p2) 

cl* (ca*? - c$) .- c’ [ (cs*” - coya + (c2*a _ C’J) (cl*2 - c’2p”/p”)]‘/” p’/p 

When passing through the point &, , the function y (5) changes the sign ( + 00 for 

- 00)‘ For the angle $, = amtg PO , the transparency and reflection coefficients become 

infinite. It can be assumed that for angles 9 =5 go nonlinear effects become important, 
for the description of which linearization theory of small perturbations is unsuitable. 

We note that by violation of the second inequality of (4.11). there is an angle of total 
internal reflection q+ defined by the formula 

*tit+== arc sin [cl* (c’*’ - Cafe + clf2)-“o ] 

For 9 > I#+ , absorption of the waves in the elastic body occurs, so that shear elastic 
waves propagate parallel to the interface of the media. 

Vanishing of the second factor in (4.9) corresponds to the case w’ = 0 and. obi = 0. 
As the stress perturbations are equal to zero on the area which coincides with the inter- 

face, the stated case is also realized in the case of contact of a liquid with an ideal gas 
or vacuum. For the coefficient of reflection E we obtain the formula 

E= 
cl*2 - (c,*s - co2) 5 

cl*2 + (C,*’ - CC) 5 

In a linear Maxwellian liquid, the function E (5) z 1, The effect of anisotropy of 

sound is expressed most sharply for oblique rays. 
The author expresses his thanks to L. I. Sedov for discussion of a number of problems 

dealt with in the paper, to G, A. Liubimov and S. A. Regirer for constant attention to 
the paper, and to V. M. Entov for drawing the attention of the author to the paper PI.]. 
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